Rutgers University: Algebra Written Qualifying Exam

 August 2018: Problem 1 SolutionExercise. Give an example of an integral domain R and an ideal I in R such that all of the following statements hold. The ideal I is not principal, it is not maximal, and it is prime.

Solution.

$$
\langle 2, x\rangle \subseteq \mathbb{Z}[x, y]=R
$$

Not Principal: If $\langle 2, x\rangle=\langle p(x, y)\rangle$ then $2 \in I \Longrightarrow p(x, y) q(x, y)=2$ for some $q(x, y) \in \mathbb{Z}[x, y]$ $\Longrightarrow p(x, y)=1$ or 2

If $p=1$ then $\langle 2, x\rangle=\mathbb{Z}[x, y]$, which is not true, so we have a contradiction.
If $p=2$ then $x \in\langle 2\rangle$ and so $\exists f(x, q) \in \mathbb{Z}[x, y]$ such that $2 f(x, y)=x$,
which is not true, so we have a contradiction.
$\langle 2, x\rangle$ is not a principal ideal in $R=\mathbb{Z}[x, y]$.
Not Maximal: $\langle 2, x\rangle\langle 2, x, y\rangle \subsetneq R$
Prime: Let $a(x, y), b(x, y) \in R$. Then

$$
a(x, y)=a^{\prime}(x, y)+r(y), \quad b(x, y)=b^{\prime}(x, y)+s(y)
$$

where $a^{\prime}(x, y), b^{\prime}(x, y) \in I$ and $r(y)=\sum \alpha_{i} y^{i}$ and $s(y)=\sum \beta_{i} y^{i}$ where α_{i} and β_{i} are either 0 or odd integers
Suppose $a b \in I$. Then

$$
a(x, y) b(x, y)=\underbrace{a^{\prime}(x, y) b^{\prime}(x, y)+a^{\prime}(x, y) s(y)+b^{\prime}(x, y) r(y)}_{\in I}+r(y) s(y)
$$

and $r(y) s(y)=\sum \alpha_{i} \beta_{j} y^{i+j}$ and α_{i}, β_{j} are either zero or odd integers
$\Longrightarrow \alpha_{i} \beta_{j}$ is either 0 or an odd integer
$\alpha_{i} \beta_{j} \in I \Longleftrightarrow r(y) s(y)=0$
If $r(y) s(y)=0$, then $r(y)=0$ or $s(y)=0$
$\Longrightarrow a \in I$ or $b \in I$.
$\langle 2, x\rangle$ is a prime ideal.

