Rutgers University: Algebra Written Qualifying Exam August 2018: Problem 1 Solution

Exercise. Give an example of an integral domain R and an ideal I in R such that *all* of the following statements hold. The ideal I is not principal, it is not maximal, and it is prime.

Solution. $\langle 2, x \rangle \subseteq \mathbb{Z}[x, y] = R$ Not Principal: If (2, x) = (p(x, y)) then $2 \in I \implies p(x, y)q(x, y) = 2$ for some $q(x, y) \in \mathbb{Z}[x, y]$ $\implies p(x,y) = 1 \text{ or } 2$ If p = 1 then $\langle 2, x \rangle = \mathbb{Z}[x, y]$, which is not true, so we have a contradiction. If p = 2 then $x \in \langle 2 \rangle$ and so $\exists f(x,q) \in \mathbb{Z}[x,y]$ such that 2f(x,y) = x, which is not true, so we have a contradiction. $\langle 2, x \rangle$ is not a principal ideal in $R = \mathbb{Z}[x, y]$. **Not Maximal:** $\langle 2, x \rangle \langle 2, x, y \rangle \subseteq R$ **<u>Prime</u>:** Let $a(x, y), b(x, y) \in R$. Then a(x, y) = a'(x, y) + r(y), b(x, y) = b'(x, y) + s(y)where $a'(x,y), b'(x,y) \in I$ and $r(y) = \sum \alpha_i y^i$ and $s(y) = \sum \beta_i y^i$ where α_i and β_i are either 0 or odd integers Suppose $ab \in I$. Then $a(x,y)b(x,y) = \underbrace{a'(x,y)b'(x,y) + a'(x,y)s(y) + b'(x,y)r(y)}_{\in I} + r(y)s(y)$ and $r(y)s(y) = \sum \alpha_i \beta_j y^{i+j}$ and α_i, β_j are either zero or odd integers $\implies \alpha_i \beta_i$ is either 0 or an odd integer $\alpha_i \beta_i \in I \iff r(y) s(y) = 0$ If r(y)s(y) = 0, then r(y) = 0 or s(y) = 0 $\implies a \in I \text{ or } b \in I.$ $\langle 2, x \rangle$ is a prime ideal.